The Formation and Evolution of the Solar System (2024)

  • Alexander, C. M. O’D., Boss, A. P., Keller, L. P., Nuth, J. A., & Weinberger, A. (2007). Astronomical and meteoritic evidence for the nature of interstellar dust and its processing in protoplanetary disks. In V. B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets (pp. 801–813). Tucson: University of Arizona Press.

  • ALMA (Atacama Large Millimeter Array) Partnership, Brogan, C. I., Peres, I. M., Hunter, T. R., Dent, W. R. F., Hales, A. S., . . . Tatematsu, K. (2015). The 2014 ALMA Long Baseline Campaign: First Results from High Angular Resolution Observations toward the HL Tau Region. The Astrophysical Journal Letters, 808, L3.

  • Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M., & Jacobsen, S. B. (2010). Importance of uranium isotope variations for chronology of the solar system’s first solids. 41st Lunar and Planetary Science Conference, Abstract #1648.

  • Anders, F., & Owen, T. (1977). Origin and abundance of volatiles. Science, 198, 453–465.

  • Andrews, S. M., & Williams, J. P. (2005). Circ*mstellar dust disks in Taurus-Auriga: The submillimeter perspective. The Astrophysical Journal, 631, 1134–1160.

  • Andrews, S. M., Wilner, D. J., Zhu, Z., Birnstiel, T., Carpenter, J. M., Perez, L. M., . . . Ricci, L. (2016). Ringed substructure and a gap at 1 AU in the nearest protoplanetary disk. The Astrophysical Journal Letters, 820, 40.

  • Arakawa, S., & Nakamoto, T. (2016). Rocky planetesimal formation via fluffy aggregates of nanograins. The Astrophysical Journal Letters, 832, L19–L24.

  • Armitage, P. J. (2007). Lecture notes on the formation and early evolution of planetary systems. Retrieved from https://arxiv.org/abs/astro-ph/0701485.

  • Armitage, P. J., Eisner, J. A., & Simon, J. B. (2016). Prompt planetesimals formation beyond the snow line. The Astrophysical Journal Letters, 828, L2–L7.

  • Bai, X.-N., & Stone, J. M. (2010). Dynamics of solids in the midplane of protoplanetary disks: Implications for planetesimal formation. The Astrophysical Journal, 722, 1437–1459.

  • Bai, X.-N., Ye, J., Goodman, J., & Yuan, F. (2016). Magneto-thermal disk winds from protoplanetary disks. The Astrophysical Journal, 818, article id. 152, 20 pp.

  • Balbus, S. A., & Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I. Linear analysis. The Astrophysical Journal, 376, 214–222.

  • Balbus, S. A., & Hawley, J. F. (1998). Instability, turbulence and enhanced transport in accretion disks. Review of Modern Physics, 70, 1–53.

  • Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., Morbidelli, A., & Dotson, R. (2008).The solar system beyond Neptune: Overview and perspectives. In M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson (Eds.), The solar system beyond Neptune (pp. 3–10). Tucson: The University of Arizona Press.

  • Beckwith, S. V. W., Henning, T., & Nakagawa, Y. (2000). Dust properties and assembly of large particles in protoplanetary disks. In V. Mannings, A. P. Boss, & S. S. Rassell (Eds.), Protostars and planets IV (pp. 533–558). Tucson: University of Arizona Press.

  • Beckwith, S. V. W., & Sargent, A. I. (1996). Circ*mstellar disks and the search for neighboring planetary systems. Nature, 383, 139–144.

  • Beitz, E., Güttler, C., Blum, J., Meizner, T., Tieser, J., & Wurm, G. (2011). Low velocity collisions of cantimeter-sized dust aggregates. The Astrophysical Journal, 736, 34–45.

  • Belloche, A., Hennebelle, P., & André, P. (2006). Strongly induced collapse in the class protostar NGC 1333 IRAS 4A. Astronomy and Astrophyics, 453, 145–154.

  • Birnstiel, T., Dullemon, C. P., & Brauer, F. (2010). Gas-and dust evolution in protoplanetary discs. Astronomy and Astrophysics, 513, A79–A90. Retrieved from https://arxiv.org/abs/1002.0335.

  • Birnstiel, T., Fang, M., & Johansen, A. (2016). Dust evolution and formation of planetesimals. Space Science Reviews, 205(1–4), 41–75.

  • Bitsch, B., Johansen A., Lambrechts, M., & Morbidelli, A. (2015). The structure of protoplanetary discs around evolving young stars. Astronomy and Astrophysics, 575, A28–A45.

  • Bisnovaty-Kogan, G. S., & Lovelace, R. V. E. (2001). Advective accretion disks and related problems including magnetic fields. New Astronomy Reviews, 45, 663–742.

  • Blum, J. (2004). Grain growth and coagulation. In A. N. Witt, G. C. Clayton, & B. T. Draine (Eds.), ASP conference series vol. 309, astrophysics of dust (p. 369). San Francisco: ASP.

  • Blum, J., Schrapler, R., Davidson, B. J., & Trigo-Rodriguez, J. M. (2006). The physics of protoplanetary dust agglomerates. I. Mechanical properties and relations to primitice bodies in the solar system. The Astrophysical Journal, 652, 1768–1781.

  • Blum, J., & Wurm, G. (2000). Experiments on sticking, restructuring and fragmentation of preplanetary dust aggregates. Icarus, 143, 138–146.

  • Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A., & O’Brien, D. P. (2006). Iron meteorites as remnants of planetesimals formed in terrestrial planet region. Nature, 439, 821–824.

  • Bouvier, A., & Wadhwa, M. (2009). Synchronizing the absolute and relative clocks: Pb-Pb and Al-Mg systematics in CAIs from the ALLENDE AND NWA 2364 CV3 chondrites. 40th Lunar Planetary Science Conference, Abstract 2184.

  • Brisset, J., Hesselmann, D., Kothe, S., Weidling, R., & Blum, J. (2013). Submillimetre-sized dust aggregate collision and growth properties. Experimental study of a multi-particle system on a suborbital rocket. Astronomy and Astrophysics, 593, A3–A24.

  • Calvet, N., D’Alessio, P., Hartmann, L., Wilner, D., Walsh, A., & Sitko, M. (2002). Evidence for a developing gap in a 10 Myr old protoplanetary disk. The Astrophysical Journal, 568(2), 1008–1016.

  • Canup, R. M., & Esposito, L. W. (1996). Accretion of the moon from an impact-generated disk. Icarus, 119, 427–446.

  • Carrera, D., Gorti, U., Johansen, A., & Davies, M. B. (2017). Planetesimal formation by the streaming instability in a photoevaporating disk. The Astrophysical Journal, 839, 16–33.

  • Carrera, D., Johansen, A., & Davies, B. (2015). How to form planetesimals from mm-sized chondrules and chondrule agregates. Astronomy and Astrophysics, 579, A43.

  • Cassen, P. (1994). Utilitarian models of the solar nebula. Icarus, 112, 405–429.

  • Cassen, P., & Summers, A. (1984). Models of the formation of the solar nebula. Icarus, 53, 26–40.

  • Chambers, J. E. (2008). A semi-analitic model for oligarchic growth. Icarus, 180, 496–513.

  • Chambers, J. E. (2010). Planetesimal formation by turbulent concentration. Icarus, 208, 505–517.

  • Chiang, E., & Youdin, A. N. (2010). Forming planetesimals in solar and extrasolar nebulae. In R. Jeanloz & K. H. Freeman (Eds.), Annual Reviews of Earth and Planetary Science (Vol. 38, pp. 493–522).

  • Chirikov, B. V. (1982). Non-linear resonances and dynamical stochastic. Priroda #7 (803), 15–25.

  • Ciardi, D. R., Telesco, C. M., Packham, C., Gómez Martin, C., Radomski, J. T., De Buizer, J. M., . . . Harker, D. E. (2005). Crystalline silicate emission in the protostellar vinary serpens SVS 20. The Astrophysical Journal, 629, 897–902.

  • Cieza, L. A., Kessler-Silacci, J. E., Jaffe, D. T., Harvey, P. M., & Evans, N. J., II. (2005). Evidence for J- and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages. The Astrophysical. Journal, 635, 422–441.

  • Chirikov, B. V. (1979). A universal instability of many-dimensional oscillator systems. Physics Reports, 52(5), 263–379.

  • Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, A., Wielandt, D., & Ivanova, M. A. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.

  • Contopoulos, G. (2002). Order and chaos in dynamical astronomy. New York: Springer.

  • Cuzzi, J. N., Hogan, R. C., & Shariff, K. (2008). Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysics Journal, 687, 1432–1447.

  • DeMeo, F. E., & Carry, B. (2014). Solar system evolution from compositional mapping of asteroid belt. Nature, 505, 629–633

  • Dominik, C., Blum, J., Cuzzi, J., & Wurm, G. (2007).Growth of dust as the initial step toward planet formation. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets (pp. 783–800). Tucson: University of Arizona Press.

  • Donahue, T. M., Hoffman, J. H., Hodges, R. R., Jr., & Watson, A. J. (1982). Venus was wet: A measurement of the ratio of D to H. Science, 216, 630–633.

  • Dorofeeva, V. A., & Makalkin, A. B. (2004). EvolyutsiyaranneiSolnechnoisistemy. Kosmokhimicheskie i fizicheskieaspekty (Evolution of the early solar system. Cosmochemical and physical aspects). Moscow, URSS: LIBROKOM Book House.

  • Drazkowska, J., & Dullemond, C. P. (2014). Can dust coagulation trigger streaming instability? Astronomy and Astrophysics, 572(A78), 1–12.

  • Dubrulle, B. (1993). Differentional rotation as a source of angular momentum transfer in the solar nebula. Icarus, 106, 59–76.

  • Dullemond, C. P., Natta, A., & Testi, L. (2006). Accretion in protoplanetary disks: The imprint of core properties. The Astrophysics Journal, 645, L69–L72.

  • Dutrey, A., Guilloteau, S., & Ho, P. (2007). Interferometric spectro-imaging of molecular gas in protoplanetary disks. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets V (pp. 495–506). Tucson: University of Arizona Press.

  • Eisner, J. A., & Carpenter, J. M. (2006). Massive protoplanetary disks in the trapezium region. The Astrophysical Journal, 641, 1162–1171.

  • Estrada, P. R., Cuzzi, J. N., & Morgan, D. A. (2016). Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. Methodology and typical results. The Astrophysical Journal, 818, 200–241.

  • Fegley, B., Jr. (2000). Kinetics of gas-grain reactions in the solar nebula. Space Science Reviews, 92, 177–200.

  • Ferraz-Mello, S., Michtchenko, T., Beaugé, C., & Callegari, N., Jr. (2005). Extrasolar planetary systems. In R. Dvorak, F. Freistetter, & J. Kurths (Eds.), Chaos and stability in planetary systems. Lecture notes in physics 683 (pp. 219–271). Heidelberg, Germany: Springer.

  • Fridman, A. M., Boyarchuck, F. F., Bisikalo, D. V., Kuznetsov, O. A., Khoruzhii, O. V., Torgashin, Y. M., & Kilpio, A. A. (2003). The collective mode and turbulent viscosity in accretion disks. Physics Letters A, 317, 181–198.

  • Garaud, P., & Lin, D. N. C. (2004). On the evolution and stability of a protoplanetary disk dust layer. The Astrophysical Journal, 608(2), 1050–1075.

  • Goldreich, P., & Ward, W. R. (1973). The formation of planetesimals. The Astrophysical Journal, 183, 1051–1061.

  • Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435(7041), 466–469.

  • Greenberg, R., Hartman, W. K., Chapman, C. R., & Wacker, J. F. (1978). Planetesimals to planets—numerical simulation of collisional evolution. Icarus, 35, 1–26.

  • Grossman, L., Ebel, D. S., & Simon, S. B. (2002). Formation of refractory inclusions by evaporation of condensate precursors. Geochimica et Cosmochimica Acta, 66(1), 145–161.

  • Gurevich, L. E., & Lebedinsky, A. I. (1950). On the origin of planets. IzvestiyaAcademiiNauk SSSR, series physics. USSR Academy of Science News, Physical Series, 14(6), 765–799.

  • Güttler, C., Blum, J., Zsom, A., Ormel, C. W., & Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collisions experiments. Astronomy and Astrophysics, 513, A56.

  • Haisch, K. E., Lada, E. A., & Lada, C. J. (2001). Disk frequencies and lifetimes in young clusters. The Astrophysical Journal, 553, L153–L156.

  • Hill, C. R., Heißelmann, D., Blum, J., &. Fraser, H. J. (2015). Collisions of small ice particles under microgravity conditions. Astronomy and Astrophysics, 573, A49–A60.

  • Honda, M., Kataza, H., Okamoto, Y. K., Miyata, T., Yamash*ta, T., Sako, S., . . . Onaka, T. (2003). Detection of crystalline silicates around the T Tauri Star Hen 3–600A. The Astrophysical Journal, 585, L59–L63.

  • Hueso, R., & Guillot, T. (2005). Evolution of protoplanetary disks: Constraints from DM Tauri & GM Aurigae. Astronomy and Astrophysics, 442, 703–725.

  • Ida, S., Guilot, T., & Morbidelli, A. (2016). The radial dependence of pebble accretion rates: A Ssurce of diversity in planetary systems. I. Analytical formulation. Astronomy and Astrophysics, 591, A72–A84. Retrieved from https://arxiv.org/abs/1604.01291.

  • Ipatov, S. I. (2014). Formation of embryos of the earth-moon system at the stage of rarefied condensatios. EPSC Abstracts, 9, EPSC2014–202–2.

  • Ivanova, M. A., Krot, A. N., Nagashima, K., & MacPherson, G. J. (2012). Compound ultrarefractory CAI-bearing inclusions from CV3 carbonaceous chondrites. Meteoritics and Planetary Science, 47, 2107–2127.

  • Ivanova, M. A., Lorenz, C. A., Krot, A. N., & MacPherson, G. J. (2015). A compound Ca-, Al-rich inclusion from CV3 chondrite North West Africa 3118: Implication for understanding processes during CAI formation. Meteoritics and Planetary Science, 50(9), 1512–1528.

  • Jacobson, S. A., & Morbidelli, A. (2014). Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions of the Royal Society A, 20130174, 2–25.

  • Jacquet, E., Balbus, S., & Latter, H. (2011). On linear dust-gas streaming instabilities in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 415, 3591–3598.

  • Jansson, K. W., Johansen, J., Syed, M. B., & Blum, J. (2017). The role of pebble fragmentation in planetesimal formation. II. Numerical simulation. The Astrophysical Journal, 835, 109–120.

  • Johansen, A., Oishi, J. S., Mac Low, M. M., Klahr, H., Henning, T., & Youdin, A. (2007). Rapid planetesimal formation in turbulent circ*mstellar discs. Nature, 448, 1022–1025.

  • Johansen, A., Youdin, A., & Klahr, H. (2009). Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. The Astrophysical Journal, 697, 1269–1289.

  • Johansen, A., Youdin, A., & Mac Low, M. M. (2009). Particle clumping and planetesimal formation depend strongly on metallicity. The Astrophysical Journal, 704, L75–79.

  • Johansen, J., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., & Rickman, H. (2014). The multifaceted planetesimal formation process. Retrieved from https://arxiv.org/pdf/1402.1344.pdf.

  • Kataoka, A., Tanaka, H., Okuzumi, S., & Wada, K. (2013). Fluffy dust forms icy planetesimals by static compression. Astronomy & Astrophysics, 557. In Section 1. Letter to the Editor L4. Retrieved from https://arxiv.org/abs/1307.7984.

  • Klein, R. I., Inutsuka, S., Padoan, P., & Tomisaka, K. (2007). Current advances in the methodology and computational simulation of the formation of low-mass stars. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets V (pp. 99–116). Tucson: University of Arizona Press.

  • Kobayashi, H., & Ida, S. (2001). The effects of a stellar encounter on planetesimal disk. Icarus, 153, 416–429.

  • Kolesnichenko, A. V., & Marov, M. Ya. (2006a). Foundations of mechanics of heterogeneous media in the circ*msolar protoplanetary disk: The influence of solid particles on turbulence in the disk. Solar System Research, 40, 2–62.

  • Kolesnichenko, A. V., & Marov, M. Ya. (2006b). Chaotic and ordered structures in the developed turbulence. In A. Fridman, M. Ya. Moriv, & I. G. Kovalenko (Eds.), Progress in the study of astrophysical discs: Collective and stochastic processes and computational tools (pp. 23–54). New York–Heidelberg–Dordrecht–London: Springer, ASSL series.

  • Kolesnichenko, A. V., & Marov, M. Ya. (2007). On the influence of helicity on the evolution of turbulence in the solar protoplanetary disk. Solar System Research, 41(7), 3–43.

  • Kolesnichenko, A. V., & Marov, M. Ya. (2008). Thermodynamic model of MHD turbulence and some of its applications to accretion disks. Solar System Research, 42, 1–33.

  • Kolesnichenko, A. V., & Marov, M. Ya. (2013). Modeling of aggregation of fractal dust clusters in a laminar protoplanetary disk. Solar System Research, 47(2), 80–98.

  • Kolesnichenko, A. V., & Marov, M. Ya. (2014). Modification of the jeans instability criterion for fractal-structure astrophysical objects in the framework of non-extensive statistics. Solar System Research, 48(5), 354–365.

  • Königl, A., & Pudritz, R. E. (2000). Disk winds and the accretion-outflow connection. In V. Mannings, A. P. Boss, & S. S. Rassell (Eds.), Protostars and planets IV (pp. 759–788). Tucson: University of Arizona Press.

  • Kothe, S., Blum, J., Weidling, H., & Güttler, C. (2013). Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates. Icarus, 225, 75–85.

  • Krijt, S., Ormel, S. W., Dominik, S., & Tielens, A. G. G. M. (2016). A panoptic model for planetesimal formation and pebble delivery. Astronomy and Astrophysics, 586, A20–A34. article id.A20, 14 pp.

  • Lagrange, A.-M., Backman, D. E., & Artymovich, P. (2000). Planetary material around main-sequence stars. In V. Mannings, A. P. Boss, & S. S. Rassell (Eds.), Protostars and planets IV (pp. 639–672). Tucson: University of Arizona Press.

  • Lankowski, D., Teiser, J., & Blum, J. (2008). The physics of protoplanetary dust agglomerates. II. Low-velocity collision properties. The Astrophysical Journal, 675, 764–776.

  • Lipschutz, M. E., Biswas, S., & McSween, H. J. (1983). Chemical characteristics and origin of H Chondrite Regolith Breccias. Geochemica et Cosmochemica Acta, 47, 169–179.

  • Lissauer, J. J., & de Pater, I. (2013). Fundamental Planetary Science. Physics, Chemistry and Habitability. New York: Cambridge University Press.

  • Lorek, S., Gundlach, B., Lacerda, P., & Blum, J. (2016). What cometary bulk density implies for the cloud mass and dust-to-ice ratio. Astronomy and Astrophysics, 587, A128.

  • Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591, 1220–1247.

  • Lynden-Bell, D., & Pringle, J. E. (1974). The evolution of viscous discs and the origin of the nebular variables. Monthly Notices of the Royal Astronomical Society, 168, 603–637.

  • MacPherson, G. J. (2005). Calcium-aluminum-rich inclusions in chondritic meteorites. In A. M. Davis (Ed.), Meteorites, comets and planets (pp. 201–246). Oxford: Elsevier-Pergamon.

  • Makalkin, A. B., & Dorofeeva, V. A. (1995). Structure of the protoplanetary accretion disk around the sun at the T Tauri stage: I. Initial data, equations, and model construction methods. Solar System Research, 29, 99–122.

  • Makalkin, A. B., & Dorofeeva, V. A. (1996). Structure of the protoplanetary accretion disk around the sun at the T Tauri stage: II. Results of model computations. Solar System Research, 30, 496–513.

  • Mandell, A. M., Raymond, S. N., & Sigurdsson, S. (2007). Formation of earth-like planets during and after giant planets migration. The Astrophysical Journal, 660, 823–844.

  • van der Marel, N., van Dishoeck, E. F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C.P., . . . van Gees, V. (2013). A major asymmetric dust trap in a transition disk. Science, 340, 1199–1202.

  • Marov, M. Ya. (2005). Small bodies and some problems of cosmogony. Uspechi Physics Nauk, 75(6), 668–678.

  • Marov, M. Ya. (2015). The fundamentals of modern astrophysics. A survey of cosmos from the home planet to space frontiers. New York: Springer-Verlag.

  • Marov, M. Ya., & Grinspoon, D. H. (1998). The planet Venus. New Haven, CT: Yale University Press.

  • Marov, M. Ya., & Ipatov, S. I. (2005). Dust particles migration and volatiles inventory to the terrestrial planets. Solar System Research, 39, 419–425.

  • Marov, M. Ya., Kolesnichenko, A. V., Makalkin, A. B., Dorofeeva, V. A., & Ziglina, I. N. (2009). Modeling of Gas-Dust Protoplanetary Discs. Proceedings of the International Conference Nonstationary Phenomena and Instabilities in Astrophysics (NPIA 2009). Volgograd, Russia.

  • Marov, M. Ya., & Kolesnichenko, A. V. (2013). Turbulence and self-organization: Modelling astrophysical objects. New York: Springer.

  • Marov, M. Ya., Kolesnichenko, A. V., Makalkin, A. B., Dorofeeva, V. A., Ziglina, I. N., & Chernov, A. V. (2013). From the protosolar cloud to the planetary system: A model for the evolution of the gas-dust disk. In E. M. Galimov (Ed.), Problems of biosphere origin and evolution (pp. 319–404). New York: Nova Science.

  • Marov, M. Yа., & Kuksa, M. M. (2015). Numerical simulations of turbulent ionized gas flows in the circ*msolar protoplanetary disk. Solar System Research, 49(5), 324–338.

  • Marov, M. Ya., & Rusol, A. V. (2011). A model for the impact interaction of bodies in a gas-dust protoplanetary disk. Doklady Physics, 56(12), 597–601.

  • Marov, M. Ya., & Rusol, A. V. (2015a). Gas-dust protoplanetary disc: Modeling collisional interaction of primordial bodies. Journal of Modern Physics, 6, 181–193.

  • Marov, M. Ya., & Rusol, A. V. (2015b). Gas-dust protoplanetary disc: Modeling primordial dusty clusters evolution. Journal of Pure and Applied Physics, 3(2), 16–23.

  • Marov, M. Ya., & Rusol, A. V. (2016). Computer modeling of protoplanetary clusters formation. Conference dedicated to 100th Anniversary of A. N. Tichonov, Moscow State University, October 2016.

  • Marov, M. Ya., & Rusol, A. V. (in press). Fluffy clusters collisions in the primordial protoplanetary disk. Astronomical Journal Letters.

  • Marov, M. Ya., & Shevchenko, I. I. (2014). Priroda, #6, 3–15.

  • Marov, M. Ya., & Shevchenko, I. I. (2017). Exoplanets. Izhevs, USSR: Izhevsk Institute of Computer Sciences.

  • Matsumoto, Y., Oschino, S., Hasegawa, Y., & Wakita, S. (2017). Chondrule accretion with a growing protoplanet. The Astrophysical Journal, 837, 103–116.

  • McSween, H. Y., Jr., & Huss, G. R. (2010). Chronology of the solar system from radioactive isotopes. In Cosmochemistry (chapter 9, pp. 308–353). Cambridge, UK: Cambridge University Press.

  • Meibom, A., Krot, A. N., Robert, F., Mostefaoui, S., Russell, S. S., Petaev, M. I., & Gounelle, M. (2007). Nitrogen and carbon isotopic composition of the sun inferred from a high-temperature solar nebular condensate. The Astrophysical Journal, 656, L33–L36.

  • Morbidelli, A., Bitsch, B., Crida, A., Gounelle, M., Guillot, T., Jacobson, S., . . . Lega, E. (2015). Fossilized condensation lines in the solar system protoplanetary disc. Icarus, 267, 368–376. Retrieved from https://arxiv.org/abs/1511.06556.

  • Morbidelli, A., Bottke, W., Nesvorny, D., & Levison, H. F. (2009). Asteroids were born big. Icarus, 204, 558–573.

  • Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. (2005). Chaotic capture of Jupiter’s Trojan asteroids in the early solar system. Nature, 435(7041), 462–465.

  • Morbidelli, A., Lunine, J. I., O’Brien, D. P., & Walsh, K. J. (2009). Building terrestrial planets. Annual Review of Earth and Planetary Sciences, 40, 251–275. Retrieved from https://arxiv.org/abs/1208.4694.

  • Morbidelli, A., Nesvorny, D., Laurenz, V., Marchi, S., Rubie, D. C., Elkins-Tanton, L., & Jacobson, S. A. (2017). The lunar late heavy bombardment as a tail-end of planet accretion. Lunar and Planetary Science, XLVIII, #2298.

  • Morbidelli, A., & Raymond, S. N. (2016). Challenges in planet formation. Journal of Geophysical Research: Planets, 121(10), pp. 1962–1980. Retrieved from https://arxiv.org/pdf/1610.07202.pdf.

  • Morrison, D., & Owen, T. C. (1988). The planetary system. New York: Addison-Wesley.

  • Nakagawa, Y., Hayashi C., & Nakazawa K. (1983). Accumulation of planetesimals in the solar nebula. Icarus, 54, 361–376.

  • Nakagawa, Y., Nakazawa, K., & Hayashi, C. (1981). Growth and sedimentation of dust grains in the primordial solar nebula. Icarus, 45, 517–528.

  • Nakagawa, Y., Sekiya, M., & Hayashi, C. (1986). Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus, 67, 375–390.

  • Nakamoto, T., & Nakagawa, Y. (1994). Formation, early evolution, and gravitational stability of protoplanetary disks. The Astrophysical Journal, 421, 640–651.

  • Natta, A., Testi, L., Calvet, N., Henning, Th., Waters, R., & Wilner, D. (2007). Dust in proto-planetary disks: Properties and evolution. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets V (pp. 767–781). Tucson: University of Arizona Press.

  • Nesvorny, D., Youdin, A. N., & Richardson, D. C. (2010). Formation of Kuiper belt binaries by gravitational collapse. The Astronomical Journal, 140, 785–793.

  • O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., & Mandell, A. M. (2014). Water delivery and giant impacts in the Grand Tack scenario. Icarus, 239, 74–84.

  • Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. (2007). Dust coagulation in protoplanetary disks: Porosity matters. Astronomy and Astrophysics, 461, 215–236.

  • Palme, H., & Boyton, W. V. (1993). Meteoritic constraints on conditions in the solar nebula. In E. H. Levy & J. I. Lunine (Eds.), Protostars and planets III (pp. 970–1004). Tucson: University of Arizona Press.

  • Pan, L., Padoan, P., Scalo, J., Kritsuk, A. G., & Norman, M. L. (2011). Turbulent clustering of protoplanetary dust and planetesimal formation. The Astrophysical Journal, 740(2), article 6.

  • Perez, L. M., Isella, A., Carpenter, J. M., & Chandler, C. J. (2014). Large-scale asymmetries in the transitional disks of SAO 206462 and SR 21. The Astrophysical Journal Letters, 783, L13.

  • Petaev, M. I., & Wood, J. A. (1998). The condensation with partial isolation (CWPI) model of condensation in the solar nebula, meteoritics planet. Science, Vl(33), 1123–1137.

  • Pfalzner, S., Davies, M. B., Gounelle, M., Johansen, A., Munker, C., Lacerda, P., . . . Veras, D. (2015). The formation of the solar system. PhysicaScripta, 90(6). Retrieved from https://arxiv.org/abs/1501.03101.

  • Pinte, C., Dent, W. R. F., Menard, F., Hales, A., Hill, T., Cortes, P., & de Gregorio-Monsalvo, I. (2016). Dust and gas in the disk of HL Tauri: Surface density, dust settling, and dust-to-gas ratio. The Astrophysical Journal, 816, 25.

  • Pudritz, R. E., Ouyed, R., Fendt, C., & Brandenburg, A. (2007). Disk winds, jets, and outflows: Theoretical and computational foundations. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets V (pp. 277–294). Tucson: University of Arizona Press.

  • Rab, C., Baldovin-Saavedra, C., Dionatos, O., Vorobyov, E., & Gudel, M. (2016). The gas disk: Evolution and chemistry. Space Science Reviews, 205(1–4), 3–40.

  • Raettig, N., Klahr, H., & Lyra, W. (2015). Particle trapping and streaming instability in vortices in protoplanetary discs. The Astrophysical Journal, 804, 35–51.

  • Raymond, S. N., & Izidoro, A. (2017). Origin of water in the inner solar system: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus, 297, 134–148.

  • Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. (2009). Building the terrestrial planets: Constrained accretion in the inner solar system. Icarus, 203, 644–662.

  • Safronov, V. S. (1969). Evolyutsiyadoplanetnogooblaka i obrazovanieZemli i planet (Evolution of the protoplanetary cloud and formation of the earth and planets). Moscow: Nauka.

  • Saxena, S. K., & Eriksson, G. (1986). Chemistry of the formation of terrestrial planets. In S. K. Saxena (Ed.), Advances in physical geochemistry (Vol. 6, pp. 3–105). New York: Springer.

  • Schaefer, U., Yang, C.-C., & Johansen, A. (2017). Initial mass function of planetesimals formed by streaming instability. Astronomy and Astrophysics, 597, A69.

  • Schmidt, O. Yu. (1957). Origin of earths and planets. Moscow: USSR Academy of Sciences.

  • Schrapler, R., Blum, J., Seizinger, A., & Kley, W. (2012).The physics of protoplanetesimal dust agglomerates. VII. The low-velocity collision behavior of large dust agglomerates. The Astrophysical Journal, 758, 35–44.

  • Shakura, N. I., & Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astronomy and Astrophysics, 24, 337–353.

  • Shukolyukov, Yu. A., & Lugmair, G. W. (2003). Chromium isotopic composition of the acid-resistant residues from carbonaceous chondrites. Meteoritics & Planetary Science, 38, Supplement, abstract no.5077.

  • Suzuki, T. K., Ogihara, M., Morbidelli, A., Crida, A., & Guillot, T. (2016). Evolution of protoplanetary discs with magnetically driven disc winds. Astronomy and Astrophysics, 596, A74–A89.

  • Toomre, A. (1964). On the gravitational stability of a disk of stars. The Astrophysical Journal, 139, 1217–1238.

  • Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479–487.

  • Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the solar system. Nature, 435(7041), 459–461.

  • Villeneuve, J., Chaussidon, M., & Liboured, G. (2009). hom*ogeneous distribution of 26Al in the solar system from the Mg isotope composition of chondrules. Science, 325, 985.

  • Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. (2008).Numerical Simulation of Dust Aggregate Collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions. The Astrophysical Journal, 677, 1296–1308.

  • Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. (2009). Collisional growth conditions for dust aggregates. The Astrophysical Journal, 702, 1490–1501.

  • Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2012). Populating the asteroid belt from two parent source regions due to the migration of the giant planets—“the Grand Tack.” Meteoritics & Planetary Science, 47, 1941–1947.

  • Ward, W. R. (2000). On planetesimal formation: The role of collective particle behavior. In R. M. Canup & K. Righter (Eds.), Origin of the earth and moon (pp. 75–84). Tucson: University of Arizona Press.

  • Wasserburg, G. J. (1985). Short-lived nuclei in the early solar system. In D. C. Black & M. S. Matthews (Eds.), Protostars and planets II (pp. 703–737). Tucson: University of Arizona Press.

  • Weidenschilling, S. J. (1977). Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 57–70.

  • Weidenschilling, S. J. (1980). Dust to planetesimals: Settling and coagulation in the solar nebula. Icarus, 44, 172–189.

  • Weidenschilling, S. J. (2000). Formation of planetesimals and accretion of the terrestrial planets. Space Science Reviews, 92, 295–310.

  • Weidenschilling, S. J. (2010).Were asteroids born big? An alternative scenario. In Lunar and Planetary Institute Science conference (LPSC) Abstracts, 41, 1453. Houston: LPI.

  • Weidling, R., Güttler, C., Blum, J., & Brauer, F. (2009). The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. The Astrophysical Journal, 696, 2036–2043.

  • Weidling, R., Güttler, C., & Hium, G. (2011). Free collisions in microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Retrieved from https://arxiv.org/abs/1105.3909.

  • Wetherill, G. W. (1996). The formation and habitability of extra-solar planets. Icarus, 119, 219–238.

  • Wetherill, G. W., & Stewart, G. R. (1989). Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357.

  • White, R. J., Greene, T. P., Doppmann, G.W., Covey, K. R., & Hillenbrand, L. A. (2007). Stellar properties of embedded protostars. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets V (pp. 117–13). Tucson: University of Arizona Press.

  • Williams, J. P., & Best, W. M. J. (2014). A parametric modeling approach to measuring the gas masses circ*mstellar disks. The Astrophysical Journal, 788, 59–60.

  • Wooden, D., Desch, S., Harker, D., Gail, H.-P., & Keller, L. (2007). Comet grains and implications for heating and radial mixing in the protoplanetary disk. In B. Reipurth, D. Jewitt, & K. Keil (Eds.), Protostars and planets V (pp. 815–833). Tucson: University of Arizona Press.

  • Yang, C.-C., & Johansen, A. (2014). On the feeding zone of planetesimal formation by the streaming instability. The Astrophysical Journal, 792(2), 86. Retrieved from https://arxiv.org/abs/1407.5995.

  • Yang, C.-C., Johansen, A., & Carrera, D. (2016). Astronomy and Astrophysics. Retrieved from https://arxiv.org/pdf/1611.07014.pdf.

  • Youdin, A. N., & Goodman, J. (2005). Streaming instabilities in protoplanetary disks. The Astrophysical Journal, 620, 459–469.

  • Youdin, A. N., & Kenyon, S. J. (2012). From disk to planets. In P. Kalas & L. French (Eds.), Planets, stars and stellar systems. The Netherlands: Springer. Retrieved from https://arxiv.org/abs/1206.0738.

  • Youdin, A. N., & Shu, F. (2002). Planetesimal formation by gravitational instability. The Astrophysical Journal, 580, 494–505.

  • Ziglina, I. N., & Makalkin, A. B. (2016). Gravity instability in the dust layer of protoplanetary disk: Intraction of solid particles with gas. Solar System Research, 50(6), 431–449.

  • Zsom, A., Ormel, C. W., Güttler, C., Blum, J., & Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astronomy and Astrophysics, 513, A57.

The Formation and Evolution of the Solar System (2024)
Top Articles
Latest Posts
Article information

Author: Carmelo Roob

Last Updated:

Views: 6766

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Carmelo Roob

Birthday: 1995-01-09

Address: Apt. 915 481 Sipes Cliff, New Gonzalobury, CO 80176

Phone: +6773780339780

Job: Sales Executive

Hobby: Gaming, Jogging, Rugby, Video gaming, Handball, Ice skating, Web surfing

Introduction: My name is Carmelo Roob, I am a modern, handsome, delightful, comfortable, attractive, vast, good person who loves writing and wants to share my knowledge and understanding with you.